On surface radiation conditions for an ellipse

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On surface radiation conditions for an ellipse

We compare several On Surface Radiation Boundary Conditions in two dimensions, for solving the Helmholtz equation exterior to an ellipse. We also introduce a new boundary condition for an ellipse based on amodal expansion inMathieu functions. We compare the OSRC to a finite difference method. © 2009 Elsevier B.V. All rights reserved.

متن کامل

On The Perimeter of an Ellipse

Let E be the ellipse with major and minor radii a and b respectively, and Pbe its perimeter, then P = lim 4 tan(p/n)(a + b + 2) Σ a2 cos2 (2k-2)Pi/n+ sin2 (2k-2)Pi/n; where n = 2m. So without considering the limit, it gives a reasonable approxi-mation for P, it means that we can choose n large enough such that the amountof error be less than any given small number. On the other hand, the form...

متن کامل

On the Perimeter of an Ellipse

Computing accurate approximations to the perimeter of an ellipse is a favourite problem of mathematicians, attracting luminaries such as Ramanujan [1, 2, 3]. As is well known, the perimeter, , of an ellipse with semimajor axis a and semiminor axis b can be expressed exactly as a complete elliptic integral of the second kind, which can also be written as a Gaussian hypergeometric function, (1) ...

متن کامل

Searching for the Center of an Ellipse

Biedl et al.[1] first posed the problem of finding the center of a circle, starting from a point on the boundary, using a limited number of operations. We solve an open problem, presented in their work: finding the center of an ellipse. We present new algorithms for finding the center of the ellipse and provide results of experiments showing how these algorithms perform under the introduction o...

متن کامل

on the perimeter of an ellipse

let e be the ellipse with major and minor radii a and b respectively, and pbe its perimeter, then p = lim 4 tan(p/n)(a + b + 2) σ a2 cos2 (2k-2)pi/n+ sin2 (2k-2)pi/n; where n = 2m. so without considering the limit, it gives a reasonable approxi-mation for p, it means that we can choose n large enough such that the amountof error be less than any given small number. on the other hand, the formul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2010

ISSN: 0377-0427

DOI: 10.1016/j.cam.2009.08.011